首页> 外文OA文献 >Real-time Localization and Elevation Mapping within Urban Search and Rescue Scenarios
【2h】

Real-time Localization and Elevation Mapping within Urban Search and Rescue Scenarios

机译:城市搜索和救援场景中的实时本地化和高程映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Urban Search And Rescue (USAR) is a time critical task. Rescue teams have to explore a large terrain within a short amount of time in order to locate survivors after a disaster. One goal in Rescue Robotics is to have a team of heterogeneous robots that explore autonomously, or partially guided by an incident commander, the disaster area. Their task is to jointly create a map of the terrain and to register victim locations, which can further be utilized by human task forces for rescue. Basically, the robots have to solve autonomously in real-time the problem of Simultaneous Localization and Mapping (SLAM), consisting of a continuous state estimation problem and a discrete data association problem. Extraordinary circumstances after a real disaster make it very hard to apply common techniques. Many of these have been developed under strong assumptions, for example, they require polygonal structures, such as typically found in office-like environments. Furthermore, most techniques are not deployable in real-time. In this paper we propose real-time solutions for localization and mapping, which all have been extensively evaluated within the test arenas of the National Institute of Standards and Technology (NIST). We specifically deal with the problems of vision-based pose tracking on tracked vehicles, the building of globally consistent maps based on a network of RFID tags, and the building of elevation maps from readings of a tilted Laser Range Finder (LRF). Our results show that these methods lead under modest computational requirements to good results within the utilized testing arenas.
机译:城市搜救(USAR)是一项时间紧迫的任务。救援队必须在短时间内探索广阔的地形,以便在灾难发生后找到幸存者。救援机器人的一个目标是拥有一支由异类机器人组成的团队,这些机器人可以自主地或在事故指挥官的指挥下,在灾区进行部分探索。他们的任务是共同创建地形图并记录受害者的位置,人类特遣队可以进一步利用这些位置进行救援。基本上,机器人必须实时地自主解决同步定位和映射(SLAM)问题,该问题包括连续状态估计问题和离散数据关联问题。真实灾难后的特殊情况使应用通用技术变得非常困难。其中许多是在强大的假设下开发的,例如,它们需要多边形结构,例如通常在类似办公室的环境中发现的结构。此外,大多数技术不能实时部署。在本文中,我们提出了用于定位和地图绘制的实时解决方案,这些解决方案已在美国国家标准技术研究院(NIST)的测试领域中得到了广泛的评估。我们专门处理跟踪车辆上基于视觉的姿态跟踪,基于RFID标签网络构建全局一致的地图以及根据倾斜激光测距仪(LRF)的读数构建高程图的问题。我们的结果表明,这些方法在适度的计算要求下可在使用的测试领域内取得良好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号